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The range of Fourier methods can be significantly increased by extending a non-
periodic function f (x) to a periodic function f̃ on a larger interval. When f (x) is
analytically known on the extended interval, the extension is straightforward. When
f (x) is unknown outside the physical interval, there is no standard recipe. Worse
still, like a radarless aircraft groping through fog, the algorithm may wreck on the
“mountain-in-fog” problem: a function f (x) which is perfectly well behaved on the
physical interval may very well have singularities in the extended domain. In this
article, we compare several algorithms for successfully extending a function f (x)

into the “fog” even when the analytic extension is singular. The best third-kind ex-
tension requires singular value decomposition with iterative refinement but achieves
accuracy close to machine precision. c© 2002 Elsevier Science (USA)

Key Words: local Fourier basis; wavelets; pseudospectral algorithms; Fourier
extension.

1. INTRODUCTION

1.1. The Need for Fourier Extension: Applying Fourier
Methods to Nonperiodic Functions

If f (x) can be expanded in a rapidly convergent Fourier series, then it is easy to find a
particular solution to the inhomogeneous Poisson equation

uxx − u = − f (x) (1)

since

f (x) =
N∑

j=−N

f j exp(i j x) → u P(x) =
N∑

j=−N

f j

1 + j2
exp(i j x), (2)
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as follows by term-by-term matching. Boundary conditions such as

u(±χ) = 0 (3)

can easily be enforced by writing

u(x) = u P + A exp(x) + B exp(−x) (4)

and choosing the constants A and B so that the boundary conditions are satisfied. Because
the Fourier coefficients of f (x) can be computed by the fast Fourier transform (FFT) in
O(N log2 N ) operations, the overall algorithm is extremely fast.

The flaw is that if f (x) is nonperiodic, even so simple a function as f (x) ≡ x , then the
Fourier series will converge very slowly, usually with f j ∼ O(1/j) as j → ∞ [6]. However,
if f (x) can be extended to a periodic function f̃ on the larger interval x ∈ [−�, �], then
the Fourier–Poisson algorithm will work as advertised. This and similar applications have
motivated a great deal of interest in what we dub the “Fourier extension problem”: how
to systematically construct such periodic functions f̃ from a given nonperiodic f (x) [5,
10–15, 20].

1.2. The Definition of “Fourier Extension”

DEFINITION 1.1 (Fourier Extension Problem). Given a (generally) nonperiodic function
f (x) on x ∈ [−χ, χ ], the Fourier extension problem is to define a function f̃ on a larger
interval x ∈ [−�, �] such that

1.

f̃ ≡ f ∀x ∈ [−χ, χ ], (5)

2. f̃ is periodic with period 2�, and
3. f̃ has a rapidly convergent Fourier series.

The extension is of the first kind when f (x) is known and analytical everywhere on the
extended interval x ∈ [−�, �], of the second kind when f (x) is known but has singularities
on either or both of the “extension intervals” x ∈ [−�, −χ ] and x ∈ [χ, �], and of the
third kind when f (x) is not known outside the “physical” interval x ∈ [−χ, χ ].

Fourier extension of the first kind is rather easy because one can multiply f (x) by a
function T to obtain f̃ ≡ T f (x) provided that the “bell” or “smoothed top hat” T has the
following properties:

1. T ≡ 1 ∀x ∈ [−χ, χ ].
2. T is infinitely differentiable everywhere on the extended interval x ∈ [−�, �].
3. T is “infinitely flat” at x = ±χ, ±� in the sense that the bell and all its derivatives

are zero at these points.

These properties guarantee that f̃ is a good extension in the sense that its Fourier series
converges exponentially fast, and yet even so f̃ ≡ f (x) everywhere on the physical interval,
x ∈ [−χ, χ ]. Bell functions with these properties are extremely useful in wavelets and local
Fourier basis methods and so several good families are available, as explained in [5, 18].
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Parenthetically, it should be noted that the extension can be more efficiently performed
by slightly modifying the simple product construction [5]; more sophisticated first-kind
methods are explained and compared in Section 2. The f̃ ≡ T f variant suffices to show
that extension of the first kind is a solved problem.

When f (x) has known singularities on the extension zones, that is, at some point xs

in either of the intervals x ∈ [−�, −χ ] and x ∈ [χ, �], the product formula also works
provided only that the bell is narrowed so that it becomes infinitely flat at the location of the
singularity closest to the physical domain instead of at x = ±�. (Other, sometimes better
strategies are described and compared in Section 3.) Thus, although the rate of Fourier
convergence is slowed when the bell is narrowed, extension of the second kind is a solved
problem, too.

In many applications, however, f (x) is known only on the physical domain x ∈ [−χ, χ ].
For example, if f (x) is an ocean stress due to wind and the coasts are at x = ±χ , then we
have no data—and no water—in the extension zones |x | > χ . Nevertheless, we can still
mathematically define an extended function f̃ , specified both on land and water, which
matches the measured f (x) in the ocean. However, outside the physical domain we are,
metaphorically, flying in the unknown as much as a radarless 1920s mail plane groping its
way through thick fog.

1.3. Uniqueness of Extension

Fortunately, there is an infinite variety of extensions which are infinitely differentiable
(and therefore in the function class “C∞”), but are not analytic, and therefore not obliged
to blow up at the singularities of the analytic continuation of f (x). Indeed, the space of C∞

extensions is so wide that the extension problem is rather ill conditioned.

THEOREM 1.1 (Uniqueness/Nonuniqueness of Extension). If a function f (x) is ana-
lytic everywhere on the extended interval x ∈ [−�, �] except perhaps for isolated singu-
larities, then the analytic continuation of f (x) from the physical interval to the larger
extended interval is unique, modulo choices of branch cuts, and so forth. If analytic-
ity is relaxed to the milder condition of being C∞, that is, infinitely differentiable with
bounded derivatives of all orders everywhere on the extended interval, then any C∞ ex-
tension is not unique. If f̃ is a C∞ extension, then another extension in this same class is
given by

g̃ ≡ f̃ + 	(x), (6)

where 	(x) is any C∞ function which is (i) infinitely flat at x = ±χ and (ii) identically
zero everywhere on the physical domain x ∈ [−χ, χ ].

Proof. With specification of all branch cuts, complex variable theory shows that the
analytic continuation of a function f (x) is unique, or, in other words, two analytic functions
cannot agree everywhere on an interval of finite length and yet disagree elsewhere (p. 65 of
[8]). The nonuniqueness of C∞ functions is obvious since g̃ ≡ f (x) ∀x ∈ [−χ, χ ]; a C∞

bell (such as T in the next section) of sufficiently narrow width to fit in the extension zones
provides an explicit example of a function 	(x) which is zero everywhere on the physical
interval. �
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FIG. 1. Schematic of Fourier extension from the original, physical interval x ∈ [−χ, χ ] to a larger interval.
Because the extended function f̃ is periodic on the extended interval x ∈ [−�, �], it is conceptually useful to wrap
the extended interval into a circle so that the points x = ±� coincide. In both panels, the thin curve is the original
function f (x); the extension is dashed in the lower panel. The extension zones, x ∈ [−�, −χ ] and x ∈ [χ, �],
become a single continguous interval (heavy dashes) when the periodic domain is wrapped into a circle.

1.4. Derivative Matching Conditions: Why a Good Extension Must Be HIP

DEFINITION 1.2 (Hermite Interpolation Property (HIP)). An extension is said to have
the “Hermite interpolation property” to order k, or, for brevity, to be “HIP” to order k, if f̃ ,
f̃ (1), . . . , f̃ (k) for the extended function match the corresponding derivatives of the function
f (x) which is being extended through order k at both endpoints of the physical interval.

The reason for the name is that the usual two-point Hermite polynomial interpolant of
degree 2k + 1 is HIP in the sense defined here, although this property applies to extensions
which are not necessarily polynomials, or Hermite interpolants in any sense except this
derivative-matching-at-the-endpoints property. The significance of being HIP is expressed
by the following.

THEOREM 1.2 (Necessity of Derivative Matching (HIP)). If the extended function f̃ has
Fourier cosine coefficients a j and sine coefficients b j which decrease at least as fast as
O(1/j k+2) and if f̃ perfectly matches f (x) everywhere on the physical interval, then the
extension must possess the Hermite interpolation property (HIP) of order k.

Proof. If f̃ is HIP to order k but not order k + 1 and exactly equals f everywhere on
the physical interval, then the (k + 1)st derivative of f̃ must be discontinous at the end-
points of the physical domain. The usual integration-by-parts argument used to derive the
Fourier asymptotic coefficient expansion (FACE) in Ch. 2 of [6] then shows that the Fourier
coefficients of f̃ will decrease no faster than O(1/j k+2). �

Thus, if the extended function is to have a rapidly converging Fourier series, then f̃ must
be HIP to high order.
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FIG. 2. The upper thin curve is f (x) on the physical interval. The thick solid curve is the analytic extension,
which has a jump discontinuity at x = ±�. The thick dashed curve is a “good” extension in which the discontinuity
has been smoothed so that the Fourier expansion of the function defined by the thin-solid-plus-thick-dashed-
curve converges rapidly. The vertical dotted lines bounded the region where the two extensions differ; this is the
nonapproximation interval, where the smooth extension is a poor approximation to f (x), the analytic extension.

The bell–imbricate methods described in the next two sections are HIP to infinite order.
The reason is that f̃ is the product of f with a “bell” function T that is “infinitely flat”
at the endpoints of the physical interval in the sense that all the derivatives of T are zero at
these points.

In contrast, the FPIC-SU third-kind method of Section 4 does not explicitly impose HIP
conditions. The resulting Fourier coefficient spectra (see Fig. 27, right panel) are rather flat
except very near the truncation limit N . Even so (and fortunately), the approximations are
still very accurate on the physical interval.

Because the derivatives that are matched are also the leading terms in the ordinary power
series of both f (x) and f̃ about the endpoints of the physical domain, it follows that
the extension must accurately approximate f (x) at least in a small neighborhood of both
endpoints of the physical interval.

And yet, in dramatic contrast, all useful extension methods must also have a “nonapprox-
imation property,” defined as follows.

1.5. Nonapproximation Property (NAP)

One strategy for continuation is analytic continuation: f̃ ≡ f (x) everywhere on the entire
extended domain, x ∈ [−�, �]. However, as illustrated in Fig. 1, a Fourier series approxi-
mation is always periodic; the best way to visualize this is to bend the interval into a circle so
that the points x = � and x = −� are the same point, exactly as they are treated as the same
point by a Fourier series with period 2�. This implies that if f (�) �= f (−�), then the exten-
ded function f̃ on the circle x ∈ [−�, �] will have a jump discontinuity at the “join,”
x = ±�, as illustrated in Fig. 2. The Fourier coefficients a j will then converge at the awful
rate of a j ∼ O(1/j). Thus, the analytic extension is a horrible strategy for nonperiodic
f (x).1

This argument has larger implications: any extension scheme that accurately approxi-
mates f (x) over the whole extended interval will inherit the curse of the analytic extension:

1 In the special case that f is periodic with periodic 2�, the Fourier series converges rapidly, but the extension
problem is completely trivial.
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terribly slow convergence. It follows that a useful Fourier extension method must necessarily
have the following property.

DEFINITION 1.3 (Nonapproximation Property (NAP)). An extension f̃ is said to have
the nonapproximation property (NAP) if it fails to uniformly approximate f (x) on the
extension interval in the limit that the number of terms in the Fourier series tends to infinity.

In other words, the extended function f̃ must break away from f (x)—nonapproximating
f (x)—in a neighborhood of x = ±� so that f̃ is everywhere infinitely differentiable. The
vertical dotted lines bound the nonapproximation interval where the smooth extension (thick
dashes) is a poor approximation to f (x) (thick solid curve with discontinuity).

In addition, a function f (x) which is well behaved on the physical interval x ∈ [−χ, χ ]
may have singularities in the extension domain. A good extension f̃ (x) must also have the
nonapproximation property in the vicinity of all such singularities, as well as the neighbor-
hood of x = ±�.

For third-kind extensions, by definition nothing is known about f in the extension interval.
It follows that nothing is known in this case about the singularities of f (x) and therefore
nothing about the neighborhoods where a good extension must be a poor approximation
to the singular function f (x). This is the “mountain-in-fog” problem, discussed at greater
length in Section 7.

These simultaneous conditions of HIP and NAP imply that a good extension must be both
an approximation to f (x) (near the endpoints of the physical interval) and simultaneously
not an approximation where the two pieces of the extension interval are joined at x = ±�

and also in the neighborhoods of any singularities of f (x) on the extension zone. It might
seem impossible to satisfy two such conflicting requirements simultaneously.

For Fourier extensions of the first and second kind, however, it turns out that one can
easily create explicit, well-conditioned f̃ which are both HIP and NAP by multiplying f (x)

by a bell which has two properties. First, the bell is infinitely flat at the ends of the physical
interval (in the sense that all derivatives of the bellT are zero at that point); this automatically
enforces continuity of the derivatives (HIP) to all orders for the product f T , as follows by
applying the Leibnitz rule that the derivative of a product f (x)T (x) is f dT /dx + d f/dxT
for any pair of functions f (x) and T (x). Second, the bell decays exponentially fast away
from the physical interval, thus removing the discontinuity at x = ±�. One can further
prove, as explained below, that such extensions have Fourier coefficients an that converge
faster than O(n−k) for any finite k provided only that f (x) is analytic for real x on the
physical and extension intervals.

For an extension of the third kind, that is, when f (x) is known only on the physical
interval, it is much harder to enforce the HIP and NAP properties simultaneously. We
have tried several methods and one is successful. However, even this optimum third-kind
algorithm requires singular value decomposition of the pertinent matrix. Nevertheless, its
performance is roughly the same as the best bell–imbricate first-kind method on a set of
test functions, as explained in Section 6.

1.6. Perfectly Faithful Extension

In this article, we voluntarily restrict ourselves to extensions that have the following
property.
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DEFINITION 1.4 (Perfectly Faithful Extension (PFE)). An extended function is a “per-
fectly faithful extension” if it exactly agrees with the original function on the original domain
x ∈ [−1, 1].

The desirability of a PFE extension is obvious, but there is a subtle drawback. Since a
perfectly faithful extension exactly agrees with f (x) over an interval, but is different from
it elsewhere (the NAP), it follows that a PFE cannot be an analytic function over the whole
extended domain. At most, it can be C∞, that is, infinitely differentiable. This in turn implies
[6] that Fourier coefficients of the extended function cannot converge geometrically, that
is, as exp(−q j) for some constant q > 0, but only as exp(−pjr ) for some exponent r < 1,
a “subgeometric” rate of convergence.

If one employs a bell which is analytic everywhere, then the extended function f̃ can
be analytic on the entire extended interval, too, and can converge geometrically fast. One
choice for such a bell, from an almost infinite range of possibilities, is

B(x; χ, L) ≡ 1

2
{erf(L[x + χ ]) − erf(L[x − χ ])}. (7)

In the limit that L → ∞, this becomes a step function which is nonzero between x ∈
[−χ, χ ], and the product of f (x) with B is a perfectly faithful extension, but the discon-
tinuity at x = ±χ destroys the exponential convergence of the Fourier series of f̃ ≡ f B.
However, for finite L , the Fourier convergence is geometric but the extension is no longer
perfectly faithful because B is only approximately equal to one on the physical interval.

It is not clear that this is necessarily bad; a truncated Fourier series can only approximate
f̃ anyway, so a tiny difference between f and f̃ on the physical interval need not signi-
ficantly increase the error of the approximation of f by the truncated Fourier series of f̃ .
Nevertheless, PFEs are simpler and we shall stick to them for the present. The usefulness
of imperfectly faithful extensions will be left as an open research problem.

2. A COMPARISON OF METHODS FOR FOURIER EXTENSION OF THE FIRST KIND

2.1. Description of Four Algorithms

In this section, we describe and then compare four different schemes for first-kind
extensions:

1. “Naive” or “nonoverlapped”
2. “Overlapped”
3. “Alternating”
4. Hermite interpolant/two-point Taylor.

The fourth method is in principle a scheme for third-kind extensions, too, at least some-
times, and has a very different justification than the others. Consequently, the Hermite
interpolant/two-point Taylor method is discussed in Section 5 below. However, this scheme
is included in the numerical comparisons between the four first-kind methods given later in
this present section.

The first three extension schemes are based on a pair of key elements: (i) a bell function
and (ii) an imbricate series.

As noted earlier, a bell is a function which is approximately one on the physical region
and then smoothly decays to zero as x moves away from the physical interval. There are
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FIG. 3. Erf-smoothed top-hat function or bell T . The function T ≡ 1 for all x ∈ [−χ, χ ]. χ can be chosen
arbitrarily and is 1.1 in this graph, where χ = 1.1, the physical region. The function smoothly varies from to 1 to
0 on the intervals x ∈ [−�, −χ ] and x ∈ [χ, �], which are labeled “smoothing zones.” � is also arbitrary and is
here � = π . The vertical dotted lines are the boundaries between the physical and smoothing intervals.

many possible choices, as noted earlier [3, 4, 18]. For expository purposes, it is sufficient
to consider the particular example (Fig. 3)

T (x; L , χ, �) ≡




H([x + χ + ]/; L), x ∈ [−�, −χ ]

1, x ∈ [−χ, χ ]

H(−[x − χ − ]/; L), x ∈ [χ, �],

(8)

where  ≡ (� − χ)/2. This bell tapers from one to zero on the intervals x ∈ [−�, −χ ]
and x ∈ [χ, �]. The function H is a “ramp,” that is, a smoothed approximation to a step
function defined by

H(x; L) ≡ (1/2){1 + E(x; L)}, (9)

where E is an error-function-like function (“erfoid”),

E(x; L) =




−1, x < −1
erf

(
L x√

1 − x2

)
, x ∈ [−1, 1]

1, x > 1.

(10)

The parameter L is a scaling factor that specifies how rapidly the erflike, ramp, and bell
functions tend to their limits. (We return to the issue of choosing L later.) Thanks to the
1/

√
1 − x2, the argument of the error function varies from −∞ to ∞ as x ranges from −1

to 1 so that E is infinitely flat (in the sense that all its derivatives vanish) at x = ±1. This
allows the erflike function, and, by inheritance, the ramp and bell functions, to be infinitely
differentiable for all real x (that is, to belong to the function class C∞). The bell T is not
analytic at the breakpoints x = ±χ, ±� which bound the intervals where the ramp varies
from 1 to 0.
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The function f (x) is multiplied by the bell T to create a “pattern” function G(x):

G(x) ≡ T f (x). (11)

For the first two methods, the extended f̃ is defined as an “imbricate series,”

f̃ ≡
∞∑

m=−∞
G(x − m P), (12)

where P is the spatial period. In words, the imbricate series is the result of duplicating
this pattern function, placing copies with an even spacing P over the whole interval, and
superimposing the copies. By construction, an imbricate series is always periodic with period
P . Because f̃ is periodic, it is possible to expand it in a Fourier series with coefficients
which decrease exponentially fast with degree.

In the naive or nonoverlapped method, the width of the bell is chosen so that there is no
overlap between the copies of the pattern function,

Gnonoverlapped ≡ T (x; L , χ, �) f (x), (13)

where the spatial period is P = 2�. Because the bell is identically zero for |x | > �, the
infinite series is unnecessary and we can simply write

f̃ nonoverlapped ≡ T (x; L , χ, �) f (x), x ∈ [−�, �]. (14)

However, this strategy is not very efficient. The periodic interval, x ∈ [−�, �], is best
visualized as a circle, as in Fig. 1; the two smoothing zones are actually continguous with one
another at the point x = �, which is identical on the circle with x = −�. It is more efficient
to double the width of the smoothing zones so as to generate a more rapidly convergent
Fourier series. This overlapped strategy is equivalent to choosing the pattern function to be

Goverlapped ≡ T (x; L , χ, 2� − χ) f (x), (15)

f̃ overlapped

≡




T (x; L , χ, 2� − χ) f (x) + T (x + 2�; L , χ, 2� − χ) f (x + 2�), x ∈ [−�, −χ ]

f (x), x ∈ [−χ, χ ]

T (x; L , χ, 2� − χ) f (x) + T (x − 2�; L , χ, 2� − χ) f (x − 2�), x ∈ [χ, �].
(16)

A variation on this has been employed by Averbuch et al. [1], who preferred a so-called
“alternating imbricate” series,

f̃ ≡
∞∑

m=−∞
(±1)m Galternating(x − m P/2), (17)

where the pattern function is exactly the same as for the overlapped (but nonalternating)
extension:

Galternating = Goverlapped = T (x; L , χ, 2� − χ) f (x). (18)
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FIG. 4. The pattern function and two of its copies with the correct spacing, width, and sign for each of the
three first-kind-extension schemes that are based on a bell function/imbricate series combination.

The apparent bad news is that the spatial period is doubled so that P = 4�, twice the
spacing between copies of the pattern function Galternating. The good news is that because
the cancellation between positive and negative copies of the pattern forces f̃ to have zeros
at the ends of the extension interval, it is no longer necessary to use a general Fourier series
to approximate it; only a sum of the odd sines and odd cosines is required. As we shall see
in a later section, the result is a Fourier series that converges at almost exactly the same rate
as for the nonalternating expansion. Figure 4 compares the three bell-shaped methods.

2.2. Width of the Extension Region

In the rest of the article, we assume that the width of the extension region, � − χ , is
fixed. This is unrealistic in the sense that one always has the freedom to choose the width of
the extension zone, and this does have an impact on the convergence of the Fourier series
of the extended function.

However, a little reflection should convince us that the optimum width is highly dependent
on the particular f (x) which is being extended. If f (x) ≡ 1 or another very smooth function,
then it is best to use a very wide extension zone so that the bell function can be as wide
and as smooth as possible, thus maximizing the convergence rate of the extended function.
However, if f (x) is wildly oscillatory or has singularities in the complex plane that are very
close to points on the physical interval, then it will be necessary to use a large number of
Fourier coefficients in any event. A small extension zone is then best; for a “wiggly” f (x),
the smoothness of the bell function does not control the rate of convergence of T f unless
the extension zone is very narrow.

In the analysis that follows, we always take it as a given that the boundaries of the
physical zone and of the extended interval, χ and �, are fixed. A comprehensive formula
for choosing the size of the extension zone for different classes of f (x) is an open problem
beyond the scope of this article.
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2.3. Imbricate Series Theory

As explained in [3, 4], the Poisson summation theorem implies that the Fourier coefficients
of an imbricate series are given by the Fourier transform of the pattern function where the
transform is defined by

g(x) = 1

2π

∫ ∞

−∞
G(k) exp(−ikx) dk. (19)

For the naive, nonoverlapped bell/imbricate method and also for the overlapped scheme,
Poisson summation gives

f (x) =
∞∑

m=−∞
G([x − m2�]) = π

�

∞∑
n=−∞

g

(
π

�
n

)
exp(iπnx/�). (20)

The crucial point is that the transition region in the pattern function in the nonoverlapped
method is half as wide as that in the overlapped method. Because the width of a Fourier
transform is inversely proportional to the width of the function being transformed, this
implies that the Fourier transform g(n) decreases only half as fast in the nonoverlapped
method, which is therefore always inferior to the overlapped scheme.

The alternating method gives

f (x) =
∞∑

m=−∞
(−1)m Galternating([x − m2�])

= π

�

∞∑
n=−∞

galternating

(
π

�
[n + 1/2]

)
exp(i[2n + 1]πx/(2�)). (21)

Because Galternating ≡ Goverlapped, we conclude that the alternating and nonalternating
schemes have virtually identical rates of convergence.

This is confirmed by Fig. 5, where the curves for Fourier coefficients of the overlapped and
alternating methods fall on top of one another. The coefficients for the naive, nonoverlapped
method fall off with degree j at half the rate of the other methods, as predicted.

The right panel shows that the extended function, f̃ , is very different for each of the
three methods on the extension zone, even for the two that have almost identical Fourier
coefficient magnitudes. This is yet another reminder that the extension is highly nonunique.

2.4. A Proof That Bell–Imbricate Extensions Have Infinite-Order Convergence

THEOREM 2.1 (Infinite Order Fourier Convergence for Bell–Imbricate Extensions). Sup-
pose f (x) is analytic everywhere on the interval x ∈ [−�, �] ( for the nonoverlapped
extension) and everywhere on the interval x ∈ [−2�, 2�] for the overlapped and alternat-
ing extensions. Let B denote a bell, not necessarily that defined earlier, which is infinitely
differentiable (C∞) everywhere on x ∈ [−∞, ∞] and is identically zero when |x | ≥ �

(nonoverlapping case) or when |x | ≥ 2� (nonoverlapped and alternating cases). Define
the extensions by the imbricate series

f̃ nonoverlapped ≡
∞∑

m=−∞
f (x − 2�m)B(x − 2�m), (22)
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FIG. 5. Comparison of three methods of first-kind extension for f (x) = x . (Left) Fourier coefficients where
the nonoverlapped method is labeled naive; the overlapped and alternating coefficients are not identical but are
inextricably mixed on the graph. (Right) f̃ for each of the three methods. The vertical dotted lines mark χ = ±π/2;
the spatial period of the extended function is 2π . Because f̃ (x) = − f̃ (−x) for all three extensions of this f (x),
the extended functions are graphed only for x ≥ 0. The bell width parameter is L = 4.

and with a wider bell

f̃ overlapped ≡
∞∑

m=−∞
f (x − 2�m)B(x − 2�m), (23)

and by the alternating-imbricate series

f̃ alternating ≡
∞∑

m=−∞
(−1)m f (x − 2�m)B(x − 2�m). (24)

Then the Fourier series for all three extensions have Fourier series with “infinite order”
convergence [6] in the sense that coefficients cn , or, equivalently, the cosine coefficients an

and sine coefficients bn , satisfy the bounds

|an|, |bn| ≤ constant n−k (25)

for arbitrarily large-order k.

Proof. Because the bell B is infinitely differentiable for all x and is identically zero
for |x | > � or |x | > 2�, depending on the case, the product of B with f (x) is infinitely
differentiable for all real x . This allows us to integrate by parts the Fourier coefficient
integrals as many times as we please. The coefficients of the complex exponential form of
a Fourier series of period 2� are

cn ≡ 1

2�

∫ �

−�

f̃ (x) exp(−in[π/�]x) dx, (26)
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where the cosine and sine coefficients are an = 2�(cn) and bn = −2�cn . If we integrate
by parts, repeatedly integrating the exponential and differentiating f (x), we obtain without
approximation after k steps

cn = 1

2�

k−1∑
j=0

(−1) j+n

(
i

n

) j+1(
�

π

) j+1{
f̃ ( j)(�) − f̃ ( j)(−�)

}

+ 1

2�

(
− i

n

)k(
�

π

)k ∫ �

−�

f̃ (k)(x) exp(−in[π/�]x) dx, (27)

where f̃ (k)(x) denotes the kth derivative of f̃ (x). Because the bell–imbricate extensions
are defined as imbricate or alternating-imbricate series, f̃ is always periodic. The period
is 2� for the overlapped and nonoverlapped extensions. This implies that all the boundary
terms in the summation in Eq. (26) are zero since f̃ and its derivatives are the same at both
x = � and x = −� because of the periodicity.

The integral can be bounded by a constant independent of degree n, namely

∣∣∣∣
∫ �

−�

f̃ (k)(x) exp(−in[π/�]x) dx

∣∣∣∣ ≤ 2� max
x∈[−�,�]

∣∣ f̃ (k)(x)
∣∣. (28)

It follows that Fourier coefficients must be bounded by a constant times n−k after k inte-
grations by parts. Since k is arbitrary, the theorem is proved.

For the alternating series where the period is 4�, the same argument applies except that
� in (26) and (27) is replaced by 2�. �

Note that (i) f (x) need not be periodic and (ii) the bellB need not equal the particular bell
T defined above, although the theorem applies to this bell as a special case. When the bell
is narrowed to create a bell–imbricate extension for a second-kind problem, as described in
the next section, the theorem and proof still apply with only trivial modifications.

2.5. Summary of First-Kind Extensions: When f (x) Is Known
Outside the Physical Interval

When f (x) is known not only on the physical interval but also in the desired extension
region, we have an “extension of the first kind.” If f (x) is free of singularities on and near
the extended interval, then all four methods described here will yield rapidly convergent
Fourier series for the extended function f̃ .

Figure 6 compares all four schemes for a particular nonperiodic f (x). As noted earlier,
the nonoverlapping extension (thin dashed line) is greatly inferior to the overlapping and
alternating bell–imbricate methods and therefore should never be used. The overlapping
and alternating extensions are almost indistinguishable; both give Fourier series with an
exponential rate of convergence, as shown by the almost-linear graphs of their coefficients
on this log-linear plot.

The three Hermite interpolant curves show several things. First, the rate of convergence
improves with increasing order; the ninth-degree polynomial (thick zigzag solid curve) is
a Fourier series with sixth-order convergence. Second, even the ninth-degree polynomial
gives coefficients which are much larger for high degree than those of the overlapped and
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FIG. 6. Comparison of the Fourier coefficients of f̃ for four different methods for first-kind Fourier extensions
for f (x) = x . The three thick, zigzag curves are computed by the Hermite/two-point Taylor method, but for
orders K = 3, 4, 6, respectively. L = 4 for the three schemes that use T . Note that only the first 40 nonzero
coefficients are shown; Fourier terms that are identically zero because of symmetry [i.e., f (x) = − f (x) ∀x] are
omitted.

alternating methods. This is exactly as predicted by theory; Theorem 2.1 proves that the
bell–imbricate methods give Fourier coefficients that decay faster than O( j−k) for any k, an
infinite-order convergence [6]. In contrast, Theorem 5.1 of Section 5 shows that the Hermite
approximant of degree K gives Fourier coefficients decaying no faster than O( j−(K+3)/2),
a finite-order convergence rate.

Thus, although the quintic Hermite polynomial worked well with fourth-order conver-
gence for Garbey and Tromeur–Dervout, the clear winners are two bell–imbricate methods:
overlapped and alternating. Our personal preference is for the overlapped method, but the
alternating imbricate scheme used by [1, 16, 24, 25] is not at all inferior.

All third-kind-extension schemes can also be applied to first-kind problems, too. We
compare the best first-kind and third-kind methods in Section 6; the third-kind method
proved costly but accurate.

3. EXTENSION OF THE SECOND KIND: KNOWN SINGULARITIES

IN THE EXTENSION INTERVAL

When the function f (x) is singular at a point xs on the extended interval (the defi-
nition of second-kind extension), three strategies for obtaining a nonsingular f̃ are the
following:

1. Choosing a different f (x), with its special case of singularity movement (SM).
2. Narrowed bell (NB).
3. Twice-residual singularity subtraction (TRSS).



132 JOHN P. BOYD

3.1. Prudent Choice and Singularity Movement

Choosing a different function, nonsingular on both the physical and extended intervals,
is an embarrassingly obvious tactic. If the first choice is singular but the only need is for
a function that increases monotonically at a certain general rate, or has a narrow peak, or
whatever, a function often can be invented that has the required qualitative behavior but is
singularity-free on the whole extended interval.

A variation on this theme, which is illustrated in the comparisons below, is to modify the
internal structure of the function so as to move the singularity off the extension interval.
For example,

f̂ ≡ 1

cos(x) + 2
− xs

H([−x + xs]/(xs − χ), L)x − xs
+ xs

H([x + xs]/(xs − χ), L)x + xs

(29)

is a symmetric function which would be singular at both x = ±xs if the ramps (smoothed
step functions) H were replaced by the constant function. Outside the physical interval,
however, the denominator factors of x are weakened rapidly as |x | increases so that the
denominator never changes sign and f̂ (x) is nonsingular for all real x .

3.2. Narrowed-Bell (NB) Scheme

If one insists on employing an f (x) whose analytic extension is singular in the extension
zone, a simple and never-failing strategy is to multiply f (x) by a bell function, as in the
naive, nonoverlapping first-kind method, but narrowing the bell so that T is infinitely flat
at the location of the singularity, x = xs :

f̃ N B ≡ f (x)T (x; L , χ, |xs |). (30)

(Recall that by definition T (x; L , χ, |xs |) decays from one to zero on x ∈ [χ, |xs |].) Thus,
this extended function is identically zero at the location of the nearest singularity and for
all larger |x |.

As noted earlier, the narrower the bell, the slower the rate of convergence of the Fourier
series. In any event, the narrowed bell still yields an exponential rate of Fourier convergence
for the extended function, f̃ .

A strength of this strategy is that one does not need to know the precise type of singularity
(pole, branch point, etc.) nor even the precise location. If the point of the nearest singularity
is known only approximately, one can set |xs | equal to the lower bound of the range where
the singularity is thought to lie.

3.3. Twice-Residual Singularity Subtraction (TRSS)

Another possibility is to modify the function—but only outside the physical interval—so
that the modified function is nonsingular. If the singularity is a simple pole, one may modify
f (x) by adding a term that (i) is identically zero on the physical inteval but (ii) cancels the
pole on the extension zone.

To employ bells and ramps which are as wide as possible, it is most efficient to subtract
a term which is equal to twice the residual. This will still cancel the singularity if it is
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multiplied by a ramp H which is sufficiently wide so that it rises only to a value of 1/2 at
the singular point. Assuming H varies from the endpoint of the physical interval, this gives
a ramp which is twice as wide as those employed in the narrowed-bell method: the ramp is
not required to rise all the way to one, but only halfway, at x = xs .

An example of such a modified function is

f̄ ≡ 1

cos(x) + 2
+ xs

|x | − xs
− xs

|x | − xs

{
1 − 2H

( |x | − xs

|xs | − χ
, L

)}
. (31)

f̄ ≡ f ∀x ∈ [−χ, χ ], but is nonsingular for all real x .

3.4. Comparisons

Figure 7 compares three methods of second-kind extension. The left panel is a log-linear
plot; the nearly linear slopes of the Fourier coefficients of f̃ for all three methods show that
exponential accuracy is indeed recovered. However, because of its wider ramp, the TRSS
strategy is roughly twice as efficient (or, equivalently, gives the same accuracy with only
half as many Fourier terms) as the other two methods.

The singularity movement (SM) tactic [Eq. (29)] is no more efficient than the narrowed-
bell procedure even though it uses a much wider ramp. We are at a loss to explain this.
There is no theory for the asymptotic Fourier coefficients of a function which has been
modified by a C∞ ramp in this way except for some simple theorems that prove the rate of
convergence must be exponential.

FIG. 7. Comparison of three methods of second-kind extension for f (x) = 1/(cos(x) + 2) − xs/(x − xs) +
xs/(x + xs), where the singularities are at x = ±xs , xs = (3/4)π . (Left) Fourier coefficients. (Right) f̃ for each
of the three methods. Because f̃ (x) = − f̃ (−x) for all three extensions of this f (x), the extended functions are
graphed only for x ≥ 0. The bell width parameter is L = 4.
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4. EXTENSION OF THE THIRD KIND: AVOIDING SINGULARITIES

HIDDEN IN THE FOG

When f (x) is not known on the extended interval but only on the physical interval, the
extension problem becomes much harder. First, the extension region becomes a “fog zone”
where poles and branch points may lurk, as noted earlier. Second, the extension becomes
ill conditioned both numerically and intrinsically, as explained below.

We discuss only four methods. One is the Hermite interpolation/two-point Taylor scheme
of Garbey and Tromeur-Dervout, which is described in Section 5. The other three use Fourier
physical interval collocation (FPIC): each algorithm derives a trigometric polynomial to
approximate the extended function f̃ in such a way that the polynomial interpolates f (x)

at a set of collocation points which are on the physical interval only. Two of these methods
were unsuccessful, so their description is relegated to a pair of brief appendixes (Appendix B
and Appendix C). The best method found so far is described next.

4.1. Fourier Physical Interval Collocation—Spectral Coefficients
as the Unknowns (FPIC-SU)

The best variety of Fourier physical interval collocation is solving a matrix equation
in which the column vector �a, the unknown, stores the coefficients of the usual Fourier
series for the interpolant. As in the previous section, assume for simplicity that f (x) and
f̃ are both symmetric with respect to x = 0. The Fourier approximation is then a truncated
cosine series, and all interpolation points will be at nonnegative locations (and confined to
the physical interval). The symmetry assumption is no real restriction because an arbitrary
function f (x) can be split into its symmetric and antisymmetric parts, S(x) ≡ ( f (x) +
f (−x))/2 and A(x) ≡ ( f (x) − f (−x))/2, respectively, and the interpolants to S and A
computed separately. This reduces the cost by about a factor of 4 from computing a single
interpolant to a general unsymmetric function (Chaps. 8 and 10 of [6]).

The Fourier coefficients of the cosine interpolant are the solution of the matrix problem

��M �a = �f , (32)

where

Mi j = cos

(
[ j − 1]

π

�
xi

)
, i = 1, 2, . . . , Ncoll , j = 1, 2, . . . , N , (33)

fi = f (xi ), j = 1, 2, . . . Ncoll , (34)

where the collocation points are uniformly distributed over the positive half of the physical
interval, x ∈ [0, χ ],

xi ≡ (i − 1)χ

(Ncoll − 1)
, i = 1, 2, . . . , Ncoll , (35)

where Ncoll ≥ N is the number of collocation points.
If Ncoll > N , then the matrix problem is overdetermined and must be solved in a least-

squares sense by singular value decomposition (SVD) or something similar. Even when the
matrix ��M is square, it unfortunately is ill conditioned and nearly singular.
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FIG. 8. Singular values for three different values of χ . N = 40 and � = π , but the qualitative pattern of
singular values is insensitive to N and �.

Because the SVD decomposition is well discussed in standard linear algebra textbooks
such as [23], we have banished the SVD formulas used here to an appendix. The crucial
point is that by neglecting SVD modes whose singular values are less than some cut-
off ε, we can filter much of the ill conditioning from the matrix equation [21, 23]. The
best choice of ε is problem-dependent (other than the general criterion that ε must be
small if the SVD-filtered solution is to be a meaningful approximate solution of the matrix
equation).

Figure 8 shows the singular values for the FPIC-SU. Roughly (χ/�)N singular values are
O(1); the corresponding SVD modes are well conditioned. The remaining singular values
decrease exponentially with mode number. The plateaus that appear for all three cases for
large N are obviously due to roundoff in the SVD factorization. Thus, there is no point in
including these modes in an SVD computation of ��a because these modes have roundoff-
corrupted singular values that are orders of magnitude too large. Thus, the SVD-filtering
makes sense.

In practice, though, it is not only the modes whose singular values are O(10−15), and
therefore close to machine epsilon, that are suspect. Accuracy is improved by filtering some
modes of larger but still tiny singular value.

Another helpful trick, long popular in numerical analysis for ill-conditioned linear sys-
tems, is to apply iterative refinement. This is described in Appendix A. It adds only slightly
to the cost because the expense of the SVD factorization (typically O(N 3) operations [23])
is large compared to the cost of refinement, which is only O(2N 2 + 2N 2

coll) per iteration.
The error in solving the linear system is often reduced by an order of magnitude or more,
as we illustrate through our examples.

Figure 9 shows how the error for f pole varies with both N and the SVD cutoff. When
N is sufficiently large, the maximum pointwise difference on the physical interval between
the trigonometric polynomial, whose coefficients �a are calculated by the SVD method, and
the function f pole(x) is as much as 10 billion times smaller than the maximum of f pole(x)

on the physical domain. This remarkably small error is achieved in spite of the fact that
f pole has two simple poles in the extension zone!
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FIG. 9. Logarithm (base 10) of the maximum pointwise error on the physical interval only for various
N , where N is the degree of the Fourier (cosine) approximation (also the number of collocation points since
here Ncoll = N ) and the other coordinate is the SVD cutoff. (All modes whose singular values are less than
the cutoff are filtered from the computation of the N -term cosine series.) The function being approximated is
f pole = (3/4)π/{(3/4)π − x} + (3/4)π/{(3/4)π + x}. Minimum errors after zero, one, two, and three iterative
corrections are 9.4 × 10−8, 2.1 × 10−9, 4.2 × 10−10, and 8.4 × 10−11 respectively; the maximum of f pole(x) on the
physical interval is 5.

The bad news is that the error does not decrease with increasing N to near machine epsilon,
which is O(10−16), but instead reaches a plateau which is many orders of magnitude larger.
Clearly, the SVD filtering has not completely eradicated the ill conditioning of the FPIC
scheme, but it has nevertheless made a small error possible.

The densely packed contours next to the upper edge of the diagram show that when
the SVD cutoff goes to zero, the error rises steeply. In other words, the SVD filtering is
absolutely essential to obtain accurate results. As the cutoff ε increases, however the error
slowly rises from the minimum.

Figure 10 shows how error varies with the SVD cutoff for a fixed number of collocation
points. The broad minimum shows that a cutoff in the range 10−12–10−14 gives the best
results (not only for the illustrated function but also for all the others that we tried). Thus,
although the SVD cutoff, and the need to choose it, is an additional complication in Fourier
extension, it is not a very serious complication. We used 10−13 in this section and 10−12 for
the comparisons with the bell-imbricate methods in Section 6.

Figure 11 shows the exact f (x) (dashed line) and the periodic, extended function f̃
(solid line). Instead of rising to a singularity at x = 3π/4, the extended function smoothly
levels off and then decays to a smooth oscillation. Although f̃ has no resemblance to f (x)

over most of the extension zone, the maximum pointwise error on the physical interval is
only 5.4 × 10−10!

Figures 12 and 13 show the miminum errors as a function of N and the SVD cutoff, and
compare f with f̃ , for a different function which is smooth everywhere on the extension
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FIG. 10. The error in the L∞ norm on the physical interval versus the SVD cutoff ε for f (x) = f pole(x) (as
in the previous figure) and N = Ncoll = 50. The error jumps in discrete units because the number of filtered SVD
modes, which is of course always an integer, jumps discontinously as ε varies.

interval: f (x) ≡ cos(40.5x). In contrast to the previous function, here there are rather large
errors until the basis for approximating cos(40.5x) has functions of the same or larger
wavenumber, i.e., until N > 40. Thereafter, the error decreases rapidly with increasing N—
provided the SVD cutoff is in the range 10−12–10−14—to even smaller values than attainable
for the previous example.

FIG. 11. Fourier cosine interpolation of degree 50 on x ∈ [0, π ] with the 50 collocation points restricted
to the physical domain x ∈ [0, π/2], where f = f pole(x) = (3/4)π/([3/4]π − x) + (3/4)π/([3/4]π + x). The
dashed curve is the analytic function f (x), which has a pole at x = 2.356. The solid curve is the C∞ extension,
f̃ . The approximant that is f̃ includes the basis functions {1, cos(x), cos(2x), . . . , cos(49x)}.
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FIG. 12. The function being approximated is f = cos(40.5x). Logarithm (base 10) of the maximum pointwise
error on the physical interval only for various N , where N is the degree of the Fourier (cosine) approximation
(also the number of collocation points since here Ncoll = N ) and the other coordinate is the SVD cutoff. Minimum
errors after zero, one, two, and three iterative corrections are 9.7 × 10−9, 1.9 × 10−10, 3.5 × 10−12, and 3.8 × 10−12,
respectively; the maximum of f on the physical interval is 1.

Figure 14 shows how the L∞ error for f = f pole(x) for a fixed SVD cutoff and vari-
ous N after zero, one, two, and three iterative corrections. Both panels of the graph show
clearly that two or three refinements can reduce the error by several orders of magni-
tude. This in turn reminds us that the interpolation problem is genuinely ill conditioned,

FIG. 13. Fourier cosine interpolation of degree 50 on x ∈ [0, π ] with the 50 collocation points restricted to
the physical domain x ∈ [0, π/2], where f = cos(40.5) and the SVD cutoff is 10−14. (Solid line) f̃ . (Dashed line)
f (x). The vertical dotted line is the boundary between the physical interval and the extension interval. Because of
the symmetry of both f and f̃ with respect to x = 0, only the positive half of the periodic domain is illustrated.
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FIG. 14. Errors for the FPIC-SU method applied to f = f pole(x) = (3/4)π/([3/4]π − x) + (3/4)π/

([3/4]π + x) for various numbers N of cosine functions. The unknowns of the matrix problem are the Fourier
cosine coefficients. The left and right panels are identical except that the number of collocation points, Ncoll , was
equal to N in the left panel (interpolation) but double N in the right panel, leading to an overdetermined matrix

problem for the spectral coefficients with a matrix ��M that has twice as many rows as columns. The top curve
(triangles) in each panel shows the errors when the matrix problem is solved by SVD factorization-with-cutoff
with no iterative refinement; the second-from-the-top curve (asterisks) is the result of one iterative refinement, and
the lower two curves are the result of a second and third iterative refinement, respectively. In the left panel, there is
no improvement after the second iteration, so the errors after two and three refinements are indistinguishable. For
the overdetermined system, however, the third refinement (thick curve with disks) is a significant improvement
over the errors after two refinements (diamonds). The SVD cutoff is 10−13.

but with the use of the SVD factorization-with-cutoff and iterative refinement, it is still
possible to obtain as many as 10 decimal places of accuracy over the whole physical
domain.

Another strategy for making an ill-conditioned problem better is to collocate with more
points than spectral coefficients. The matrix ��M is then rectangular and the matrix problem is
overdetermined. The right panel of Figure 14, compared with the left, shows that dramatic
increases in accuracy may also be generated by what we call “overcollocation.” Later, we
offer a detailed analysis of why overcollocation helps.

Figure 15 is the same as the previous graph except that the singular-on-the-extension-
interval function has been replaced by f (x) = cos(40.5x). Again, overcollocation adds
another four decimal places of accuracy, and two iterative refinements—three with
overcollocation—reduce error dramatically. For N > 60 with Ncoll = 2N , the effect of
three refinements is to diminish the error by a factor of 109!

4.2. Nonmatrix Ill Conditioning or Why Overcollocation Is Good

Much of the roundoff error in Fourier extensions of the third kind arises from matrix
operations, but there is a nonmatrix sort of ill conditioning which is intrinsic to Fourier
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FIG. 15. Same as the previous figure except that f = cos(40.5x). � = 2χ = π so that the extension zone is
equal in size to the physical interval.

interpolation when the collocation points are confined to only part of the periodicity
interval.

The fundamental problem is the existence of a class of functions which are small on the
collocation grid but large in the gaps between the interpolation points. We demonstrate the
existence of these in two ways. First, we explicitly construct such a function. Second,
we solve an optimization problem which generates the worst case: the function which has
the largest norm relative to its magnitude on the grid.

The explicit small-on-the-grid/large-in-the-gaps example is

�(x; m, α, N ) = {exp(−α2(x − [7/8]π)2) + exp(−α2(x − [9/8]π)2)}

×
m∏

k=1

{cos(x) − cos(xN+1−k)}, (36)

where m � N and the xN+1−k are the rightmost collocation points on the physical interval.
A typical example of this three-parameter family is illustrated in Fig. 16. Because the product
factor in � has roots at the m points on the collocation grid where it would otherwise be
largest, the maximum value of � on the collocation grid is very small. In between the roots,
however, � rises to rather large values so that its maximum on the collocation grid is at the
right edge of the physical interval. The function then rises still further to achieve its global
maximum on the extension zone.

It follows that a tiny alteration in the values of f (x) on the grid—the only input to
an interpolation scheme—may produce large changes in the interpolant on the physical
interval.

The insert in Fig. 16 shows that the Fourier coefficients of �(x) converge very rapidly;
indeed, the rate is faster than geometric because � is an entire function. Consequently,
filtering high Fourier components will not purge a perturbation like �.
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FIG. 16. �(x). The vertical dotted line is the boundary between the physical region and extension zone [at
x = χ = (3/4)π ]. The black disks show the value of �(x) on the collocation grid on the physical interval only.
The thick curve shows the value of � at all points including the extension zone. The downward spikes point to the
roots at five of the collocation points; the zeros have been displayed as disks at 1.E − 20 since their true location
at zero is infinitely off the axis on the logarithmic scale. The largest value of � on the grid points on the physical
interval is only 7.0 × 10−13, as marked by the lower horizontal dashed line. However, �(x) reaches much larger
values between the grid points, peaking in magnitude on the physical interval at 1.1 × 10−7, as marked by the
upper horizontal line. Thus, �(x) is more than 100,000 times larger on the physical interval than it is on the
collocation points. Note that half of the positive part of the extended interval is shown; �(x) decays rapidly as
|x | → 0 for |x | < π/2, the part of the interval which is not displayed. Because �(x) = �(−x), only positive x
are illustrated. N = 20 in the extension region with 60 collocation points on x ∈ [0, (3/4)π ]; the other parameters
of � are m = 5, α = 8. The inset graph in the lower right shows the first 80 cosine coefficients of �(x) on a
log-linear plot versus degree j .

However, if the number of collocation points Ncoll is larger than N , the number of
Fourier coefficients, then the scheme will detect the big-amplitude oscillations of a func-
tion like �. Indeed, if Ncoll = 2N , as in our examples, all the local maxima of � are
at or very near some of the added collocation points. The result is that the minimum
error drops from that of pure interpolation (i.e., Ncoll = N ) by a factor of 100,000 or
more. Overcollocation is an effective way to eliminate perturbations such as our exemplary
function, �, and thereby obtain a more accurate approximation to f (x) over the physical
interval.

4.3. Optimization: The Most Dangerous Perturbation

To systematically calculate even nastier examples of such small-on-the-grid functions,
let the function ω(x) have the expansion

ω(x) ≡
∑

j

µ jφ j (x), (37)
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where the φ j (x) are the basis functions and µ j are the spectral coefficients. Let brack-
ets 〈, 〉 denote the usual integral inner product over the physical interval (which depends
obviously on the behavior of the functions between the grid points) and let parentheses
denote the discrete inner product which depends on function values on the collocation grid
only:

〈 f (x), g(x)〉 ≡
∫ χ

−χ

f (x)g(x) dx; ( f (x), g(x)) ≡ π

N

∑
k

f (xk)g(xk). (38)

The optimization problem is to maximize the continuous norm on the physical interval
while constraining the discrete norm to be equal to one. Using a Lagrange multiplier λ

to enforce the constraint, this optimization problem is equivalent to maximizing the “cost
function”

J ≡ 〈ω, ω〉 + λ{1 − (ω, ω)}. (39)

The gradient of the cost function with respect to the spectral coefficients then gives the
generalized linear eigenproblem

��G �µ = λ
��K �µ, (40)

where �µ is a vector containing the spectral coefficients µ j and

Gi j ≡ 〈φi , φ j 〉, Ki j ≡ (φi , φ j ). (41)

The Lagrange multiplier λ is the eigenvalue. To interpret it, multiply both sides of the
eigenproblem by �µT . By substituting the spectral series for ω(x) and recalling the defi-
nitions of the matrix elements Gi j and Ki j , one finds that µT ��G �µ = 〈ω, ω〉 and µT ��K �µ =
(ω, ω). Recalling that (ω, ω) is constrained to equal one, we find that at the
maximum,

〈ω, ω〉 = λ. (42)

Thus, the square root of the largest eigenvalue gives the L2 norm of that function ω(x)

which has the largest norm (on the physical interval only) of all functions which have unit
discrete norm. The other eigenmodes are less interesting; the second largest eigenvalue
describes that mode which has the biggest norm of any function that is orthogonal to the
nastiest mode, and so forth.

Figure 17 shows how λ varies with χ/�. In the limit that χ = �, which is the classical
Fourier interpolation without extension, all the eigenvalues are one, and the interpolation
is very well conditioned. However, as χ/� decreases, the largest eigenvalue λ rises expo-
nentially fast even for the rather small N illustrated.

Figure 18 compares ω(x) (solid, unlabeled line) with the values of ω(x) on the collocation
grid (circles). The maximum of ω on the physical interval is more than 2600 times larger
than the largest ω(xi )—and N is only 12. As N increases, the ill conditioning increases
exponentially fast for a given χ/�.
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FIG. 17. The largest eigenvalue of the optimization problem to determine that function which has the largest
physical interval norm of all functions which have unit discrete norm on the interpolation grid. Note that the upper
solid curve was computed using 30-digit accuracy in Maple; Matlab generated the dashed curve, which is inaccurate
for small χ/�; the optimization eigenproblem is itself very ill conditioned even for small N . (Ncoll = N .)

Artifices like iterative refinement and SVD factorization can reduce roundoff error.
However, these are impotent against the nonmatrix, intrinsic ill conditioning shown here.
However, because these nasty perturbation functions are largest between the grid points,
one can reduce their effect, and obtain much better accuracy, by increasing Ncoll while the
number of Fourier coefficients N is kept fixed.

FIG. 18. The eigenmode ω(x) of largest eigenvalue for N = 12 interpolation points with χ/� = 1/2. The
solid curve shows ω; the dots show the values of ω at the interpolation points. max(ω) = 1645, but the maximum
of ω restricted to the interpolation points is only 0.61.
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5. TWO-POINT TAYLOR SERIES/HERMITE INTERPOLATION

5.1. Description

Garbey and Tromeur-Dervout have proposed a radically different remedy, which is to
define f̃ on the extension region by that fifth-degree polynomial P which agrees exactly
with f (x) and its first two derivatives at the ends of the extension interval [12, 13]. When a
polynomial interpolates one or more derivatives as well as the function itself, the polynomial
is usually called a “Hermite interpolant.” The extended function is defined by

f̃ Hermite ≡
{

f (x), x ∈ [−χ, χ ],

P(x), x ∈ [χ, −χ ].
(43)

The limits of the second interval, which run from positive to negative, may seem like a
misprint, but a periodic interval is effectively a circle with both extension zones joined into
a single subinterval that is spanned by the polynomial. The upper limit can alternatively
(and more conventionally) be specified as x = 2� − χ since this is the same point, on a
cyclic interval of period 2�, as x = −χ . Note that P is an ordinary polynomial in powers
of x , as opposed to a trigonometric polynomial.

A disadvantage of the Garbey/Tromeur-Dervout procedure is that the composite function
generally has a discontinous third derivative at the breakpoints, x = ±χ , between the phys-
ical and extension intervals. Because of this, the Fourier series of f̃ Hermite has coefficients
with a fourth-order rate of convergence; that is, the j th coefficient a j decreases asympoti-
cally as O( j−4). However, their method is very simple and parameter-free (except for the
width of the extension). For many applications, a fourth-order rate of convergence in the
Fourier series will not compromise the overall effectiveness of the computation.

Still, it is useful to ask the question: What happens if the method is generalized to
interpolate f (x) and its derivatives up to and including order (K − 2) at the breakpoints?

THEOREM 5.1 (Fourier Convergence of Hermite Extension). If the Hermite interpolant
extension is a polynomial P of degree 2K − 3, the Fourier coefficients of f̃ Hermite decrease
as O( j−K ).

Proof. Since the (K − 1) derivatives are discontinuous at the endpoints, the theorem
follows from the theorem on p. 42 of [6]. �

To distinguish this more precisely from general Hermite interpolation, which uses an
arbitrary number of points, one may also refer to P as a “two-point Taylor series.” (One-
point Hermite interpolation is the usual Taylor series approximation.)

The two-point Taylor approach of Garbey and Tromeur-Dervout has the advantage that
it can in principle be applied to third-kind extensions where the function f (x) is unknown
in the extension regions. Only the values of the derivatives of f at endpoints of the physical
domain are needed. However, if these derivatives must be calculated by one-sided finite
differences, rather than analytically, then the perils of high-order numerical differentiation
make the Hermite interpolant much less attractive as a method for Fourier extension of
any kind. High-order numerical differentiation is numerically unstable in the sense that it
becomes more and more inaccurate (rapidly!) as the order of differentiation increases.

The two-point Taylor scheme is in any event bedeviled by convergence problems, de-
scribed in the next section, which makes numerical differentiation irrelevant.
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5.2. Convergence Theory of Two-Point Taylor Series (Hermite Interpolant)

The first theorem [9] describes the construction of the two-point Hermite interpolant of
general degree where the points (a, b) of the theorem are a = χ, b = χ + 2(� − χ) in our
application.

THEOREM 5.2 (Two-Point Hermite Interpolant). Let a and b denote distinct points. The
polynomial of degree 2K − 3 which interpolates f (x) and its derivatives up to and including
order K − 2 at the points x = a and x = b is

P2K−3(x) ≡ (x − a)K−1
K−2∑
j=0

A j (x − b) j + (x − b)K−1
K−2∑
j=0

B j (x − a) j , (44)

where

A j = 1

j!

d j

dx j

{
f (x)

(x − a)K−1

}∣∣∣∣
x=b

; B j = 1

j!

d j

dx j

{
f (x)

(x − b)K−1

}∣∣∣∣
x=a

, (45)

and where P2K−3 solves the interpolation problem

P2K−3(a) = f (a),
d

dx
P2K−3(a) = d f

dx
(a) . . . ,

d K−2

dx K−2
P2K−3(a) = d K−2 f

dx K−2
(a), (46)

P2K−3(b) = f (b),
d

dx
P2K−3(b) = d f

dx
(b) . . . ,

d K−2

dx K−2
P2K−3(b) = d K−2 f

dx K−2
(b). (47)

Proof. Example 3 of Section 2.5, p. 37, of [9]. �

Unfortunately, this interpolation does not necessarily converge to f (x) even when the
function is analytic everywhere on the interval x ∈ [a, b] as expressed by the follo-
wing.

THEOREM 5.3 (Two-Point Hermite Convergence-on-Interval). The two-point Hermite
interpolation converges everywhere on the real interval between the two points x ∈ [a, b] if
and only if f (x), the function being interpolated, is free of singularities everywhere within
that domain in the complex plane which is within the lemniscate of Bernoulli whose two
foci are x = a and x = b.

More generally, define the family of “ovals of Cassini” by

|(x − a)(x − b)| = ρ2, (48)

where ρ > 0 is a constant. Let Lρ denote the region in the complex plane which is the
interior of the oval with “radius” ρ. If f (x) is analytic everywhere within LρC , but not for
any larger ρ, then the interpolant converges to f (x) geometrically (with error at degree K
proportional to (ρ/ρC)K ) everywhere in LρC but diverges outside this.

In particular, the interpolant converges to f (x) everywhere on x ∈ [a, b] if and only
if f (x) is free of singularities everywhere within ρ = 1, the heavy curve in Fig. 19. This
limiting curve in the complex x-plane, in which the two ovals just touch at a single point,
is the lemniscate of Bernoulli.
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Proof. Example 7 on p. 86 plus Theorem 4.4.3 on pp. 90–91 of [9]. �

The theorem has several amusing consequences. First, if f (x) is singular on the extension
zone, as can happen in an extension of the third kind, then we do not want to converge to it;
rather, we want to converge to a different (necessarily only C∞) function which is equal to
f (x) on the physical interval, but different on the extension zone. This is the nonapproxi-
mation property (NAP) that a useful extension must have, as discussed in Section 1.

Second, even for a first-kind extension where we have the freedom to specify an f (x) that
is analytic in the extension zone, the two-point Taylor series may fail to converge because
of singularities off the real axis, but within the lemniscate of Bernoulli, shown as the thick
curve in Fig. 19. This serious flaw of being wrecked by complex-plane singularities even
when f (x) is analytic, bounded, and smooth for real x is a liability shared with ordinary
Taylor series, which are Hermite interpolations at a single point.

Third, the values of f and its derivatives at x = −χ are the values that the Hermite inter-
polant must match on the right side of the extension interval. If f (x) is free of singularities
on the extension interval, then the Hermite interpolant will converge to f (x) everywhere
except at the point halfway between the two interpolation points, x = ±� in our applica-
tion, where f̃ (or at least a sufficiently high derivative) will have a jump discontinuity if f is
nonperiodic (Fig. 20). The Hermite interpolant unfortunately lacks the nonapproximation
property. The price of this is that the Fourier coefficients of the extended function will con-
verge only as O(1/j) in the limit that the degree of the Hermite polynomial tends to infinity.

Figure 21 shows Hermite interpolants of different orders for a different f (x) that is sin-
gular in the extension zone. The interpolant is clearly diverging and failing to have NAP in
the vicinity of the pole as well as at x = ±�. However, the ninth-degree polynomial (solid)

FIG. 19. Equiconvergence surfaces in the complex x-plane for two-point Taylor approximations. The two
points where the Hermite interpolant conditions are applied are the centers of the “bulleyes,” x = ±1; when
|a|, |b| �= 1, the shape of the contours are identical except for the simple translation and rescaling which takes the
interval [a, b] to [−1, 1]. The contours are those of the function ρ ≡ √|(x + 1)(x − 1)|, plotted at intervals of
1/4 from 1/4 to 2. The heavy contour is ρ = 1, which has the shape of the lemniscate of Bernoulli. Only if f (x)

is singularity free everywhere within this curve will the two-point Taylor approximation converge everywhere on
the real interval x ∈ [−1, 1].
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FIG. 20. Hermite interpolant extension of f (x) = x from the physical domain x ∈ [−π/2, π/2] (bounded
by the vertical dotted lines) to x ∈ [−π, π ]. Extension by means of cubic, quintic, and ninth-degree polynomials
in the extension zone is shown. In the limit where the degree goes to infinity, the extended function becomes a
straight line with jumps at x = ±π (i.e., x = ±�).

reaches a maximum only about 10 times the maximum of f on the physical interval—not a
large enough ratio to cause roundoff error difficulties—and the Fourier series of the extended
function will have sixth-order [O( j−6)] convergence. Thus, the Hermite interpolant strat-
egy is acceptable for moderate order even for functions singular on the extension interval,
in spite of the fact that it must inevitably diverge (and fail) as the interpolant order tends to
infinity.

Figure 6 above reiterates this point by showing that high-order Hermite interpolation,
which requires accurate knowledge of rather high-order derivatives of f (x) at the ends of

FIG. 21. Same as previous figure except for a different function: f = f pole = −(3/4)π/(x − (3/4)π) +
(3/4)π(x + (3/4)π).
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the physical interval, has an inferior rate of Fourier series convergence compared to the
bell-based methods of first-kind extensions.

Nevertheless, for difficult flow problems, such as that attacked by Garbey [12] and Garbey
and Tromeur-Dervout [13], the fourth-order accurate/quintic polynomial extension that they
employed may be satisfactory. The point is that this moderate order scheme cannot be
reliably extended to higher order and thus is not really a “spectral” method.

6. COMPARISON OF FIRST-KIND AND THIRD-KIND METHODS

FOR A SUITE OF TEST FUNCTIONS

Any method that works for extensions of the third kind can also be applied to extensions
of the first kind merely by ignoring the analytic continuation of f (x) into the extension
interval. An obvious question is: Is FPIC-SU better than the bell–imbricate methods for
first-kind extensions?

Unfortunately, there is no theorem to show that the FPIC-SU method even converges!
We have therefore resorted to head-to-head comparisons between the best first-kind method
(the overlapped bell–imbricate method) and the best third-kind scheme, FPIC-SU.

The theory of spectral series [6] shows that Fourier expansions should converge much
more rapidly (asymptotically!) for entire functions, such as the cosine and the powers of
x than for singular functions. Our tests therefore employed a couple of singular functions
in addition to a mix of entire functions. Theory shows that the type of singularity—first-
order pole versus second-order pole versus logarithm—has only a secondary role in Fourier
convergence, modifying the asymptotic coefficients a j as j → ∞ by perhaps a power of
j , but not altering the exponential factor of j . It is therefore sufficient to use test functions
with second-order poles.

Theory [6] shows that an arbitrary function can always be decomposed into its symmetric
and antisymmetric parts, S(x) and A(x), through S ≡ [ f (x) + f (−x)]/2 and A ≡ [ f (x) −
f (−x)]/2, and each can be separately approximated by a cosine and sine series, respectively.
Further, there is no qualitative difference between functions of different symmetries as long
as they have singularities in the same locations. Therefore, we lose no generality whatsoever
in restricting our examples to symmetric functions in this section.

Figures 22–26 show the errors versus the truncation N of the Fourier series for five
representative test functions. The pattern is very consistent.

1. FPIC-SU is roughly equal in accuracy to the bell–imbricate (first kind) method when
both iterative refinement and overcollocation are employed.

2. Without overcollocation, the third-kind FPIC-SU method is significantly worse the
the bell–imbricate scheme.

3. Without iterative refinement, FPIC-SU is much worse than the bell–imbricate scheme;
the error plateaus at O(10−5) versus O(10−13) for the bell–imbricate algorithm, and the
error does not decrease with increasing N .

The conclusion is that the bell–imbricate method, which explicitly uses the analytic
continuation of f (x) into the extension zones, is no better in accuracy than the best variant
of FPIC-SU, which requires only grid point values of f on the physical interval. (Indeed, for
the entire functions, the bell–imbricate is actually a little worse than FPIC-SU, especially
for x4, but the first-kind method is equal or a little better for singular functions.) However,
the graphs show that overcollocation and iterative refinement are both essential to producing
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FIG. 22. (Left) a plot of f (x) = cos(80.5x). (Right) A comparison of errors for this f in the L∞ norm,
plotted versus the truncation N , for the overlapped bell–imbricate method (thick curve) and three variants of
FPIC-SU: SVD with overcollocation (Ncoll = 2N ) but no iterative corrections (top thin curve with x’s), SVD with
iterative refinement but Ncoll = N (middle thin curve with diamonds), and SVD with both iterative refinement
and overcollocation (bottom thin curve with circles). The SVD cutoff ε = 10−12 · χ = π/2, � = π .

this algorithmic draw between the competing methods. This is unfortunate because SVD
with overcollocation requires an expensive O(N 3) factorization of a rectangular matrix
with many more rows than columns. The bell–imbricate scheme requires only pointwise
operations (the multiplication of f by the bell T ) followed by a standard Fourier transform
at a cost of O(N log2(N )) operations. Furthermore, there is a rigorous convergence theory
for the bell–imbricate method but not for the third-kind method.

FIG. 23. Same as previous figure but for f (x) = x4/(π/2)4.
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FIG. 24. Same as previous figure but for f (x) =
∑∞

m=−∞ exp(−25(x − 1.4m)2), which is an entire function
with narrow peaks.

Figure 27 compares the Fourier coefficients as computed by the two algorithms. The
spectral coefficients for the bell–imbricate method (left) behave as expected, with rapid
decrease with increasing degree; the exception is those for cos(80.5x), which unsurprisingly
rise to a peak at about j = 80 and then began to fall monotonically. In contrast, the Fourier
coefficients for FPIC-SU yield very flat graphs until near the truncation, with most of the
coefficients being of exactly the same magnitude. Although we have not systematically

FIG. 25. Same as previous figure but for f (x) = ∑∞
m=−∞ sech2(6(x − m)2); this has simple poles at xp =

m ± i(π/12), where m is an integer.
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FIG. 26. Same as previous figure but for f (x) =
∑∞

m=−∞ sech2(6(x − m/2)2); this is similar to the previous
function except that the singularities and peaks are twice as dense in �(x).

investigated derivative errors, the flat Fourier spectra of FPIC-SU suggest that derivatives
of the approximations generated by this algorithm would be much noiser (and likely less
accurate) than the bell–imbricate approximation.

For all these reasons, we advocate the bell–imbricate overlapped method for first-kind
problems and FPIC-SU only for third-kind problems. It is gratifying, though, that there is
no discernable difference between them in terms of either (i) accuracy for fixed N or (ii)
the smallest attainable error as N → ∞, which is close to machine epsilon for both.

FIG. 27. Absolute values of Fourier coefficients for the bell–imbricate overlapped first-kind method (left)
and the third- and first-kind FPIC-SU methods with both overcollocation Ncoll = 2N and three SVD iterative
refinements (right). The legend applies to both panels.
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7. GENERALIZATIONS: DOMAIN EMBEDDING (FICTITIOUS DOMAIN)

IN MULTIPLE DIMENSIONS AND CHEBYSHEV EXTENSION

7.1. Extension in More Than One Coordinate

A multidimensional generalization of Fourier extension is the embedding of an irreg-
ularly shaped domain into a larger, regular shape, followed by spectral expansion on the
larger domain. For example, to compute the two-dimensional flow inside a triangle, one
could expand the flow as a spectral series on a rectangle that completely encloses the
triangle (Fig. 28). Special tricks like conformal mapping and orthogonal curvilinear co-
efficients are unnecessary; the sole complication of the geometry is that the boundary
conditions must be imposed on the triangular surface instead of the walls of the circum-
scribed rectangle. This strategy is known as the method of “fictitious domain” or “embedded
domain.”

To apply a multidimensional generalization of Fourier extension, it is necessary to embed
the circumscribed rectangle in an even larger rectangle so that a nonperiodic f (x, y) can be
deformed into a periodic extended function f̃ without modifying it on the physical domain.
For this reason, it is common to use Chebyshev polynomials as the basis in one or both
coordinates (“Chebyshev extension”); the embedding domain needs to be just large enough
to enclose the physical domain.

Elghaoui and Pasquetti [10, 11], Szumbarski and Floryan [22], and Mason [17] have
successfully applied this multidimensional Chebyshev extension, but there is a danger. A
solution which is analytic within the irregularly shaped physical domain may have singu-
larities within the larger enclosing domain: the mountain-in-fog problem.

7.2. The Mountain-in-Fog Difficulty

The peril to a pilot in thick fog, radarless, is that of flying blindly into high ground. The
peril to the applied mathematician is that of extending a function whose unique analytic
continuation has a “mountain,” that is, a singularity, within the extension zones, as shown
schematically in Fig. 29.

FIG. 28. Schematic of two-dimensional spectral extension. To compute a solution on the interior of the
triangle, the unknown is expanded as a two-dimensional tensor product spectral series on the rectangle which
contains the triangle. The values of the spectral series on the shaded extension zones have no physical significance.
The spectral series must be constrained to satisfy the boundary conditions on the walls of the triangle.
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FIG. 29. In the days before radar, many aircraft, such as the little biplane on the right, came to grief by flying
into hills or mountain that were hidden by clouds or fog. Fourier extension of the third kind is tricky for the same
reason: because f (x) is known only on the physical interval, the extension zones are, metaphorically speaking,
regions of dense mathematical fog. They, too, offer opportunities for what aviators call “controlled flight into
terrain” in that a function which is smooth and analytic everywhere on the physical region may have poles, branch
points, or other singularities lurking in the extension interval, as shown schematically on the left.

DEFINITION 7.1 (Mountain-in-Fog Difficulty). A function f which is well behaved and
smooth on the physical domain may have singularities within the larger, extended domain.
The peril for spectral extension of the third kind is that by definition one has no knowledge
of f (x) outside the physical domain and, thus, has no a priori information about such
singularities. Nevertheless, poles, branch points, and discontinuities within the extended
domain will wreck the convergence of the spectral series of all extensions f̃ which are
proportional to the analytic continuation of f or otherwise constructed by schemes that
closely approximate the product of f with a bell T .

For example, in one dimension, the function

fpole(x) ≡ 1

x − xs
(49)

has a simple pole at x = xs . If the location xs of the pole is outside the physical interval,
x ∈ [−χ, χ ], then fpole(x) is analytic, infinitely differentiable, and very smooth everywhere
on the physical interval. However, if the pole is in the extension zone, |χ | < |xs | ≤ |�|,
then blindly approximating f using a spectral series must fail.

Chebyshev extension is simpler than Fourier because it is irrelevant whether f̃ (�) =
f̃ (−�). However, if there is a singularity on the extension domain, then a successful
Chebyshev extension must have the nonapproximation property (NAP) in the vicinity of
each such singularity, or the Chebyshev series of the extended function will have an awful
rate of convergence, if indeed it converges at all. This in turn implies that the mountain-
in-fog problem excludes all classes of extension methods that approximate the analytic
continuation of f (x) on the extension interval.

Brazier-Smith [7] illustrated this landmine with computations on the interior of a domain
bounded by an ellipsoid which was embedded in a sphere. Using spherical harmonics, it is
trivial to solve Laplace’s equation on the interior of the sphere and simultaneously fit the
boundary conditions on the ellipsoid. The snag is that there may be singularities between
the ellipsoid and the circumscribed sphere.

Nevertheless, Elghaoui and Pasquetti and Szumbarski and Floryan proceeded as if
Brazier-Smith’s paper had never been published and obtained good results. Mason proved
that his solutions were nonsingular not only within his physical domain, a curvilinear
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polygon, but also within the square which contained the polynomial, thus rigorously justi-
fying his two-dimensional Chebyshev expansions on the enclosing square. Is the mountain-
in-fog only a theoretical peril, unlikely in the real world?

7.3. Two-Dimensional Example of Singularities in the Extension Domain

Brazier-Smith gave a resounding No! Mason, years earlier, agreed with him by proving
his extension zone was free of “mountains.” McIver and Peregrine [19] pointed out the
perils of solving water wave problems using analytic continuation from the wavy surface;
Bateman et al. [2] noted that “so far no problems of this type have been encountered” but
modified their procedure as a precaution. Here, we agree with all these by solving a flow
between wavy walls, just like Szumbarski and Floryan [22], except our flow is inviscid.
With periodic boundary conditions in x , Szumbarski and Floryan expanded their flow as a
Fourier series in x with a Chebyshev series in the cross-channel coordinate y over the entire
square that encloses one period of the duct. However, the expansion-on-the-square fails for
the potential flow in Fig. 30.

The exact flow is two rows of contrarotating potential vortices with the streamfunction

ψ(x, y) = log{cosh(y − π) − cos(x)} − log{cosh(y + π) − cos(x)}. (50)

The walls were artfully chosen to follow two contours of ψ(x, y) so that the usual condition
that the flow is parallel to the walls is satisfied. The walls oscillate as far as y = ±2π , so
to use an expansion within a rectangle, the embedding domain must be at least that big.
Unfortunately, the exact analytic solution (50) shows explicitly that there are branch points
at x = 0, y = ±π on the interior of the embedding domain.

FIG. 30. Two-dimensional inviscid (potential) flow between wavy walls where the walls are shown as the
thick oscillating curves. The illustration shows the domain [−2π, 2π ] ⊗ [−2π, 2π ]; the portion of the square
which is outside the fluid domain is shaded. The solid and dashed lines are the streamlines; the flow velocity is
everywhere tangent to the streamlines and proceeds from left to right. Although the flow is analytic and smooth
everywhere within the flow domain, the streamfunction has logarithmic singularities in the walls, as marked by the
black disks. It is not possible to expand ψ(x, y) as a Chebyshev–Fourier series over the illustrated square because
of the branch points at x = 0, ±2π , y = ±π within the walls.
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Thus, naive embedding must sometimes fail. A robust embedding procedure must replace
ψ(x, y) by a modified function ψ̂(x, y) which differs from ψ(x, y)—and is nonsingular—
inside the walls (shaded region in the figure.) A Chebyshev series in the cross-channel
direction must be a nonapproximation in the vicinity of all such singularities.

7.4. Strategies for Multidimensional Extension

It is easy to generalize the bell–imbricate method if, through conformal mapping, one
can devise an orthogonal boundary-fitting coordinate system. A good multidimensional bell
can then be obtained by applying a one-dimensional bell T that varies with the coordinate
normal to the curving boundary.

However, if one has such an orthogonal coordinate system with new coordinates ξ(x, y),
η(x, y), a simpler alternative is to apply a standard spectral method on the rectangle in
the ξ − η plane which is the image of the physical domain. Embedded domain/spectral
extension methods are then unnecessary.

The generalization of FPIC-SU to multiple dimensions is straightforward. However, if N
is the number of spectral coefficients in one dimension, then the cost of FPIC-SU is O(N 6)

in two dimensions and O(N 9) in three dimensions!
Elghaoui and Pasquetti [10, 11] and Szumbarski and Floryan [22] ignored all these

complications and successfully solved problems without conformal mapping or application
of a multidimensional generalization of the extension schemes described here. It is clear,
however, that they were lucky: By the grace of God, their solutions were free of poles and
branch points in the extension zone.

What to do when one is not lucky in two or more dimensions remains an open problem.

8. CLOSING REMARKS

Most engineers and mathematicians take a course in complex variables and never recover
from it. The emphasis on analytic functions can give the misleading impression that analytic
functions are all there is. Fourier extension requires thinking outside this conceptual box.
The whole art of extension is based on creating periodic functions that are not analytic.
Furthermore, these have singularities which are poles or logarithms not such that the function
or a derivative of finite order is infinite at a point but such that the extension f̃ is infinitely
differentiable even at the singular points. Such not-analytic-but-C∞ functions are the cloth
from which the extended, periodic functions are tailored.

A good extension must satisfy the conflicting properties of being a good approximation
to f (x) in a neighborhood of the endpoints of the physical domain (HIP) and at the same
time being very different from f (x) (NAP) in the vicinity of the x = ±�, the boundaries of
the extension zone, and also in the neighborhood of any singularities of f in the extension
interval. When f (x) is known outside the physical interval, an extension of the first kind, we
show that it is easy to construct a robust, exponentially convergent extension by multiplying
f by a C∞ bell (bell–imbricate) method.

When f is not known outside the physical interval, one must use different methods
for extensions of the third kind. The Fourier physical interval collocation with spectral
unknowns (FPICS-SU) proved to be very reliable and accurate. Indeed, it performed as well
or better as the bell–imbricate first-kind method in head-to-head comparisons. Nonetheless,
there is a price for ignorance (in this case, ignorance or disregard of the analytic continuation
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of f (x) onto the extension zone). FPIC-SU requires singular value decomposition (SVD)
with iterative refinement and the use of more collocation points than unknowns. If N
is the number of Fourier coefficients to be computed, the bell–imbricate method is an
O(N log2(N )) algorithm whereas FPIC-SU is O(N 3) with a large proportionality constant.

We prove that the bell–imbricate method must yield infinite-order convergence; no similar
theorem is known for FPIC-SU. Furthermore, the SVD-based approximation has Fourier
coefficients which are very flat (i.e., do not decrease with degree j) until very close to
the truncation limit. In contrast, the bell–imbricate coefficients decay geometrically, as is
typical of Fourier series. There is clearly some interesting theoretical work undone for the
FPIC-SU algorithm.

Still, the empirical performance of both the bell–imbricate and FPIC-SU methods on a
suite of test functions is encouraging. Fourier extension is a way to greatly extend the range
of Fourier pseudospectral methods.

In Section 7, we showed that multidimensional problems in complex geometry can in
principle be solved by extension, too. However, singularities in the unphysical extension
zones are a peril dubbed here the mountain-in-fog problem. In principle, such difficulties
could be overcome by generalizations of the techniques described here. However, there are
many practical difficulties. It is nontrivial, without embracing complications that extension
is supposed to avoid, to construct a good, smooth bell function to approximate the char-
acteristic function of an irregular multidimensional domain. Our best third-kind method,
FPIC-SU, generalizes to two or more dimensions in a straightforward way, but cost becomes
a major issue, and there have been no numerical experiments. Multidimensional Fourier
and Chebyshev extensions are hard problems that must be left for the future.

In this work, we have limited ourselves to extending a function f (x) that is known
explicitly on the physical interval at least. This can be enough to allow efficient Fourier
pseudospectral solutions to some differential equations, as explained in the Introduction.
However, another open problem is to devise a general-purpose differential equation solver
using Fourier extension where the entire solution, and not just the inhomogeneous term and
the particular solution, is expanded as a trigonometric series.

APPENDIX A

Singular Value Decomposition Theorems and Definitions

THEOREM A.1 (SVD Decomposition: Square or Rectangular Matrices). For any ma-
trix ��M ∈ Rm×n, there exist orthogonal matrices ��U ∈ Rm×m and ��V ∈ Rn×n and scalars
σ1, . . . , σns such that

��M = ��U ��S ��V T , (A.1)

where ��S = diag(σ1, . . . , σns ) and where ns = min(m, n), that is, ��S is a diagonal matrix
with the σ j on the main diagonal. The columns of ��V are orthogonal to each other; the same
is true of the columns of ��U. If all the singular values are positive, then ��A has an ordinary
inverse which may be written in terms of the singular value decomposition as

��M−1 = ��V ��S−1 ��U T . (A.2)
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DEFINITION A.1 (SVD Inverse/Pseudoinverse). If one or more singular values are less
than a user-specified (but small) cutoff ε, then for any scalar define

σ+ ≡
{

1/σ if σ ≥ ε

0 if σ < ε.
(A.3)

The ε-pseudoinverse of a diagonal matrix is defined by ��S
+

≡ diag(σ+
1 , . . . , σ+

n ). The ε-
pseudoinverse of ��M is then

��M+ = ��V ��S+ ��U T . (A.4)

THEOREM A.2 (Pseudoinverse Approximate Solution to a Matrix Equation). The matrix
problem

��M �a = �f (A.5)

has the ε-pseudoinverse approximate solution

�a = ��M+ �f = ��V ��S+ ��U T �f . (A.6)

When the number of rows m is greater than the number of columns n and the SVD cutoff
ε = 0 or whenever the number of nonzero singular values is less than n, �a is a least-squares
solution to the matrix equation. That is, it minimizes the L2 vector norm of the residual

�r ≡ ��M �a − �f .

When 0 < ε � 1, the SVD approximation minimizes (or almost minimizes) the residual
given the constraints of (i) roundoff error and (ii) whatever intrinsic ill conditioning is
in ��M . Unfortunately, the best SVD cutoff, ε, must be determined experimentally. However,
in our application, ε is not sensitive to f (x) but is primarily determined by the rectan-
gular matrix ��M , which depends only on the extension method and on N and Ncoll, which
are the size of the rectangular matrix.

DEFINITION A.2 (Iterative Refinement (of the Solution to a Matrix Problem)). Define
the residual of the matrix equation ��M �a = �f by �r ≡ ��M �a − �f . If the norm of the residual is
large compared to the norm of �a multiplied by machine epsilon, then the accuracy of the
computed solution �a can often be improved by iterative refinement. Each iteration requires
the three steps

�r (k) ≡ ��M�a(k) − �f , k = 0, 1, 2, . . . , (A.7)

�δ(k) = ��M+�r (k), (A.8)

�a(k+1) = �a(k) − �δ(k), (A.9)

where �a(0) is the pseudoinverse (or Gaussian elimination) approximation.

Iterative refinement is very cheap because the cost of the matrix–vector multiplications
are O(N 2) per iteration whereas the cost of the SVD factorization is O(N 3).

Empirically, one to three refinements are usually sufficient in the sense that further cor-
rections rarely reduce the error significantly.
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All proofs and background can be found in the well-written text of Trefethen and Bau
[23].

APPENDIX B

Fourier Interpolation with Collocation on Physical Interval Only (FPIC):
Flavor One—Cardinal Function Approach (FPIC-CF)

The most direct way to perform interpolation is to use the Lagrange or cardinal basis.
That is to say, we form trigonometric polynomials of degree N − 1 which are zero at all of
the interpolation points except for one. The interpolant is then the sum of all the cardinal
functions, weighted by the known values of f (x) at the interpolation points.

When the points are evenly distributed over the whole interval, the cardinal basis is well
conditioned and efficient. In Fourier extension, alas, the interpolation points are clustered
in the physical interval only. This causes disastrous troubles with roundoff error.

For simplicity, we restrict attention to symmetric functions, which allows us to construct
the cardinal basis from cosine functions only. The general, unsymmetric case is similar but
requires messier notation to index both sines and cosines. For any distribution of interpola-
tion points, the N -point cosine cardinal functions are

Ccos
j (x; N ) ≡

N∏
k=1,k �= j

cos(x) − cos(xk)

cos(x j ) − cos(xk)
. (B.1)

Unfortunately, Fig. 31 shows that with points distributed uniformly over the physical
interval, a cardinal function blows up rapidly on the extension zone. Indeed, even for N as
small as 20, the ratio of the largest maximum to the smallest local maximum is greater than
1020. This implies that the oscillations on the physical interval would be lost in the roundoff

FIG. 31. The cosine cardinal function associated with j = 1 for interpolation with 20 evenly spaced points on
the physical interval only. There are 20 collocation points on x ∈ [0, π/2]; the extended domain is x ∈ [−π, π ].
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error relative to the huge magnitude of the cardinal function on the extension zone. The
cardinal function basis, so successful when the points fill the whole periodicity interval, is
a disaster wrapped in a catastrophe when the points are confined to only part of the interval.

APPENDIX C

FPIC-EXGRU: Grid Point Values as Unknowns

It is possible to apply Fourier physical interval interpolation with the the grid point values
on the extension zone as the unknowns. We abbreviate this as the FPIC-EXGRU scheme.
When the extension zone is small, this method has the advantage that a small number of
grid-point values on the extension zone are sufficient, together with the known values of
f (x) on the physical interval, to determine a trigonometric approximation of much larger
degree.

The good news is that it is possible to obtain errors similar to those of FPIC-SU when
the extension zone and physical interval are of the same size. The bad news is twofold.
First, a small extension interval did not reduce the maximum errors on the physical interval
but actually increased errors. The reason is that the larger physical interval allows more
oscillations between the collocation points.

Overcollocation was successful in reducing such errors when the spectral coefficients
were the unknowns. The second piece of bad news is that we have not been sufficiently
clever to devise an overcollocation method with grid-point unknowns. We experimented
by using an unbalanced grid with a higher density of points on the physical interval than
on the uniform grid, but we were not successful in finding an overcollocation scheme that
improved on the simple collocation scheme described above.

Because our experiments with the grid-point values as the unknowns produced no im-
provement and no overcollocation scheme, we shall not discuss FPIC-EXGRU further.
However, we cannot yet discount the possibility that more ingenious schemes may yet
exploit grid-point values as unknowns.
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